SURAJ SCHOOL REWARI

प्रकाशमय कल के लिए

Class 11Th, Chemistry

1. The element having no neutron in the nucleus of its atom is-
(A) hydrogen
(B)nitrogen
(C)helium
(D)boron
2. Theparticlespresentinthenucleusofanatomare-
(A) the proton andtheelectron
(B) the electron and theneutron
(C) the proton andtheneutron
(D) none ofthese
3. Thefractionofvolumeoccupiedby thenucleus withrespecttothe totalvolumeofanatomis- (A) 10^{-15}
(B) 10^{-5}
(C) 10^{-30}
(D) 10^{-10}
4. Whichofthefollowingisiso-electronicwithneon-
(A) O^{2-}
(B) F^{+}
(C) Mg
(D) Na 5.
The approximate size of the nucleus of ${ }^{64} \mathrm{Ni}$ is-
(A) 3 fm
(B) 4 fm
(C) 5 fm
(D) 2 fm
5. Which is true about an electron-
(A) rest mass of electronis $9.1 \quad 10^{-28} \mathrm{~g}$
(B) massofelectronincreaseswiththeincreaseinvelocity
$\begin{array}{ll}\text { (C) molarmassofelectronis } 5.48 & 10^{-4} \mathrm{~g} / \mathrm{mole}\end{array}$
(D) e/mofelectronis1.7
10^{8} coulomb/g7 ${ }_{32} \quad$ An isotone of
${ }^{76} \mathrm{Ge}$ is-
(A) ${ }_{32}^{77} \mathrm{Ge}$
(B) ${ }_{33}^{77} \mathrm{As}$
(C) ${ }^{77} \mathrm{Se}$
(D) ${ }^{78} \mathrm{Se}$

8 . When alpha particles are sent through a thin metal foil, most of them go straight through the foil because-
(A) alpha particles are much heavier thanelectrons
(B) alpha particles are positivelycharged
(C) most part of the atom is emptyspace
(D) alpha particles move with highspeed
9. Many elements have nonintegral atomic masses because-
(A) they haveisotopes
(B) their isotopes have non-integralmasses
(C) theirisotopeshavedifferentmasses
(D) theconstituents, neutrons,protonsandelectronscombinetogivefractionalmasses
10. TheMRI(magneticresonanceimaging)bodyscannersusedinhospitalsoperatewith400MHzradio frequencyenergy.Thewavelengthcorrespondingtothisradiofrequencyis-
(A) 0.75 m
(B) 0.75 cm
(C) 1.5 m
(D) 2 cm
11. Photon of which light has maximum energy-
(A) Red
(B)Blue
(C)Violet
(D)Green
12. ThevalueofPlanck'sconstantis6.63
uantumoflightwithfrequencyof8
$10^{-34} \mathrm{Js}$.Thevelocityoflightis3 $10^{8} \mathrm{~m} / \mathrm{sec}$. Whichvalueisclosesttothewavelengthinnanometerofaq $10^{15} \mathrm{sec}^{-1}$ -
(A) $5 \quad 10^{-18}$
(B) $4 \quad 10^{1}$
(C) $3 \quad 10^{7}$
(D)2 $\quad 10^{-25}$
13. Bohr's theory is not applicable to-
(A) He
(B) Li^{2+}
(C) He^{2+}
(D) theH-atom
14. What is likely to be principal quantum number for a circular orbit of diameter 20 nm of the hydrogen atom ifweassumeBohrorbitbethesameasthatrepresentedbytheprincipalquantumnumber?
(A)10
(B) 14
(C) 12
(D) 16
15. Which is the correct relationship-
(A) E_{1} fH $=1 / 2 \mathrm{EofHe}_{2}^{+}=1 / 3 \mathrm{EofLi}^{2+}=1 / 4 \mathrm{E}_{3}^{3} \mathrm{FBe}^{3+}$
(B) $\mathrm{E}_{1}(\mathrm{H})=\mathrm{E}\left(\mathrm{He}^{+}\right)=\mathrm{E}\left(\mathrm{Li}_{3}^{2+}\right)=\mathrm{E}\left(\mathrm{Be}^{3+}\right)$
(C) $\mathrm{E}_{1}(\mathrm{H})=2 \mathrm{E}\left(\underset{2}{\left(\mathrm{He}^{+}\right)}=3 \mathrm{E}\left(\underset{3}{\mathrm{Li}^{2+}}\right)=4 \mathrm{E}\left(\underset{4}{\left(\mathrm{Be}^{3+}\right)}\right.\right.$
(D) No relation
16. IfthevalueofE $=-78.4 \mathrm{kcal} / \mathrm{mole}$,theorderoftheorbitinhydrogenatomis-
(A) 4
(B) 3
(C) 2
(D) 1
17. If velocity of an electron in $1^{\text {st }}$ orbit of H atom is V , what will be the velocity of $3^{\text {rd }}$ orbi t of Li^{+2} -
(A) V
(B) $\mathrm{V} / 3$
(C) 3 V
(D) 9 V
18. In a certain electronic transition in the hydrogen atoms from an initial state (1) to a final state (2), the differenceintheorbitradius($r-r$)is 24 timesthefirstBohrradius.Identifythetransition- $_{2}$
(A) $5 \rightarrow 1$
(B) $25 \rightarrow 1$
(C) $8 \rightarrow 3$
(D) $7 \rightarrow 5$
19. Match the following-
(a) Energy of ground stateof He^{+}(i) -6.04 eV
(b) Potential energy of I orbitofH-atom
(ii) -27.2 eV
(c) Kinetic energy of II excited stateof He^{+}
(iii) $8.7 \quad 10^{-18} \mathrm{~J}$
(d) Ionisation potentialofHe ${ }^{+}$
(iv) -54.4 eV
(A)A-(i),B-(ii),C-(iii),D-(iv)
(B)A-(iv),B-(iii),C-(ii),D-(i)
(C)A-(iv),B-(ii),C-(i),D-(iii)
(D)A-(ii),B-(iii),C-(i),D-(iv)
$20 . \quad$ Theenergyofhydrogenatominitsgroundstateis-13.6eV.Theenergyofthelevelcorrespondingto $\mathrm{n}=5$ -
(A) -0.54 eV
(B) -5.40 eV
(C) -0.85 eV
(D) -2.72 eV
21. Total no. of lines in Lyman series of H spectrum will be-
(where $\mathrm{n}=\mathrm{no}$. oforbits)
(A) n
(B) $n-1$
(C) $\mathrm{n}-2$
(D) $n(n+1)$
22. ThespectrumofHe ${ }^{+}$isexpectedtobesimilartothatof-
(A) Li^{+}
(B) He
(C) H
(D) Na
23. WhatpossiblycantheratiobeofthedeBrogliewavelengthsfortwoelectronshavingthesameinitial energyandacceleratedthrough50voltsand200volts?
(A) $3: 10$
(B) $10: 3$
(C) $1: 2$
(D) $2: 1$
24. The uncertainty in the momentum of an electronis1.0 $\quad 10^{-5} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. The uncertainty of its position will be ($\mathrm{h}=6.626 \quad 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$) -
(A) $1.05 \quad 10^{-28} \mathrm{~m}$
(B) $1.05 \quad 10^{-26} \mathrm{~m}$
(C) $5.27 \quad 10^{-30} \mathrm{~m}$
(D) $5.25 \quad 10^{-28} \mathrm{~m}$
25. An α-particleisacceleratedthroughapotentialdifferenceofVvoltsfromrest.Thede-Broglie'swavelength associated with it is-
(A) $\sqrt{\frac{150}{V}} A^{\circ}$
(B) $\frac{0.286}{\sqrt{V}} A^{\circ}$
(C) $\frac{0.101}{\sqrt{V}} \mathrm{~A}^{\circ}$
(D) $\frac{0.983}{\sqrt{V}} A^{\circ}$
26. The orbital with zero angular momentum is-
(A) s
(B)p
(C)d
(D) f
27. Whichofthefollowingiselectronicconfigurationof $\mathrm{Cu}^{2+}(\mathrm{Z}=29)-$
(A) $[A r] 4 s^{1} 3 d^{8}$
(B) $[A r] 4 s^{2} 3 d^{10} 4 p^{1}$
(C) $[\operatorname{Ar}] 4 s^{1} 3 d^{10}$
(D) $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$
28. The electronic configuration of the Mn^{4+} ionis -
(A) $3 d^{4} 4 s^{0}$
(B) $3 d^{2} 4 s^{1}$
(C) $3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}$
(D) $3 \mathrm{~d}^{3} 4 \mathrm{~s}^{0}$
29. Which of the following ions has the maximum number of unpaired d-electrons-
(A) Zn^{2+}
(B) Fe^{2+}
(C) Ni^{3+}
(D) $\mathrm{Cu}^{+} 30$.
The total spin resulting from a d^{7} configuration is-
(A) 1
(B)2
(C) $5 / 2$
(D) $3 / 2$
31. Given $K \quad L \quad M \quad N$

The number of electrons present in $-=2$ is -
(A) 3
(B) 6
(C) 5
(D) 4
32. The configuration $1 s^{2} 2 s^{2} 2 p^{5} 3 s^{1}$ shows the-
(A) ground state of thefluorineatom
(B) excited state of the fluorineatom
(C) excited state of theneonatom
(D) excited state of O_{2}^{-}ion
33. Thevalue-andmforthelastelectroninthe Cl_{-}^{-}ionare-
(A) 1and2
(B) 2and+1
(C) 3and-1
(D) 1 and - 1
34. Inwhichtransition, onequantumofenergyisemitted-
(A) $n=4 \rightarrow n=2$
(B) $n=3 \rightarrow n=1$
(C) $n=4 \rightarrow n=1$
(D) $\mathrm{n}=2 \rightarrow \mathrm{n}=1$
35. Choose the correct relation on the basis of Bohr's theory-
(A) velocity of electron $\propto \frac{1}{n}$
(B) frequency of revolution $\propto \frac{\mathrm{Z}}{\mathrm{n}^{3}}$
(C) radius of orbit $\propto n Z^{2}$
(D) force on electron $\propto \frac{Z^{3}}{n^{4}}$
36. Themagnitudeofthespinangularmomentumofanelectronisgivenby-
(A) $\mathrm{S}=\sqrt{\mathrm{s}(\mathrm{s}+1)} \frac{\mathrm{h}}{2 \pi}$
(B) $S=S \frac{h}{2 \pi}$
(C) $S=\frac{\sqrt[3]{x}}{2} \frac{h}{2 \pi}$
(D) $S= \pm{ }^{1} \frac{x^{h}}{2}-2 \pi$
37. Thechangeinorbitalangularmomentumcorrespondingtoanelectrontransitioninsideahydrogenatom can be-
(A) $\frac{\mathrm{h}}{4 \pi}$
${ }_{(B)}{ }_{\pi}^{h}$
(C) $\frac{h}{2 \pi}$
(D) $\frac{\mathrm{h}}{8 \pi}$
38. Inwhichoftheseoptionsdobothconstituentsofthepairhavethesamemagneticmoment-
(A) Zn^{2+} andCu ${ }^{+}$
(B) Co^{2+} andNi ${ }^{2+}$
(C) Mn^{4+} andCo ${ }^{2+}$
(D) Mg^{2+} andSc ${ }^{+}$

